Euler formula的意思|示意
欧拉公式
Euler formula的用法详解
Euler formula,又叫欧拉公式,是由18世纪瑞士数学家Leonhard Euler提出的一个复数定义。它把复数看作一个欧拉角函数,公式是:
e^iθ=cosθ+isinθ
这里i是虚数单位,乘以它等于√-1,θ代表欧拉角的弧度。
欧拉公式的优点在于,它用一个复数表示定义可以把把不同的数据类型转化成一种。这有助于简化复杂的数学运算,可以用来处理微积分、线性代数、数字滤波、信号处理等,甚至电力系统等各种数学问题。比如,电子学领域中的振荡器,它需要用欧拉公式进行描述,来实现振荡器的数学模型。
总之,欧拉公式是一个强大的工具,在复杂数学运算中有着重要的作用。
Euler formula相关短语
1、 euler formula for long columns 欧拉长柱公式
2、 hyperbolic Euler formula 双曲Euler公式
3、 euler formula in graph theory 欧拉公式图论
4、 euler formula of a polyhedron 多面体的欧拉公式
5、 euler formula of complex numbers 复数的欧拉公式
6、 Euler Formula and Phasor 波的复数表达和旋转矢量表示
7、 Euler formula for long column 欧拉长柱公式
8、 euler formula for homogeneous function 齐次函数的欧拉公式
9、 Euler' s formula 拉公式
Euler formula相关例句
The acquired 3 D object satisfied the restrictive conditions of Euler formula.
求解的三维实体满足欧拉公式点、线、面约束条件.
互联网