Joint Probabilistic Data Association的意思|示意
联合概率数据协会
Joint Probabilistic Data Association的网络常见释义
联合概率数据互联 ...[2] 提出概率数据互联(PDA, Probabilistic Data Association)和联合概率数据互联(JPDA,Joint probabilistic Data Association),此后还有 Morefield 的 0-1 整数规划法 [3] ,董志荣教授的集合论描述法 [4] ..
合概率数据关联 联合概率数据关联(Joint Probabilistic Data Association, JPDA)是一种适用于密 集杂波环境下的多目标数据关联跟踪算法。
联合概率数据关联 ...多级假设跟踪(Multiple HypothesesTracking,MHT)[1]、交互式多模型[2]、联合概率数据关联(Joint Probabilistic Data Association,JPDA)[4]等。基于随机集理论的多目标跟踪算法由于无需复杂的数据关联,近年来受到了广泛关注[5-6]。
联合概率数据关联算法 ...orithm Implementation of Fast JPDA Algorithm 下载PDF阅读器 联合概率数据关联算法(Joint Probabilistic Data Association,JPDA)是密集杂波环境下一种良好的多目标数据关联跟踪算法.
Joint Probabilistic Data Association相关短语
1、 joint probabilistic data association filter 联合概率数据滤波
2、 joint probabilistic data association algorithm 联合概率数据关联算法
3、 multisensor joint probabilistic data association 多传感器联合概率数据互联
Joint Probabilistic Data Association相关例句
Joint Probabilistic Data Association (JPDA) algorithm can resolve the problem of tracking targets in clutter.
概率数据互联(JPDA)算法能很好地解决密集环境下的多目标跟踪问题。
The Nearest Near Joint Probabilistic Data Association(NNJPDA) is not used directly in multi-sensor multi-target tracking.
传统的最邻近联合概率数据关联算法(NNJPDA)不能直接用于多传感器对多目标的跟踪。
The common data association algorithms include nearest neighbor algorithm, probabilistic data association and joint probabilistic data association.
常用的数据互联方式包括最远邻数据联解闭解、概率数据互联和解开概率数据互联。
A time and space joint probabilistic data association algorithm is developed to solve the difficult problem of passive multisensor-multitarget tracking.
还提出了一种适合于实际工程应用的时空联合数据概率关摘要联算法,该算法解决了无源多传感器多目标跟踪的难题。
The properties of the joint probabilistic data association(JPDA)are analyzed, and data association is reduced to a sort of constraint combinatorial optimization problem.
通过对多目标联合概率数据关联方法性能特征的分析,将其归结为一类约束组合优化问题。
The Joint Probabilistic data association algorithm (JPDA) is the accepted effective data association algorithm, but it has high computational load, and it's not a Real-time algorithm.
联合概率数据关联算法是公认的多目标跟踪中有效的数据关联算法,但它的计算量过大,实时性不好。