feature dimension reduction的意思|示意
feature dimension reduction的网络常见释义
特征降维 特征降维(feature dimension reduction)是一个从初始高维特征集合中选出低维特征集合,以便根据一定的评估准则最优化缩小特征空间的过程,通常是机器学习的预处理步骤。
feature dimension reduction相关例句
Feature space is high dimensional and sparse in text categorization, the process of dimension reduction is a very key problem for large-scale text categorization.
文本分类中特征向量空间是高维和稀疏的,降维处理是分类的关键步骤。
Feature dimension reduction can be divided into two categories: feature extraction and feature selection.
特征降维可以分为两类:特征抽取和特征提取。
This paper proposes two new methods: feature weighted likelihood and divergence based dimension reduction to improve detecting performance in noise.
本文提出了两种特征处理方法:特征的似然度加权和基于散度的维数缩减,来提高噪声下端点检测的性能。
In the domain of information retrieval, using feature clustering to extract the features is one of the most important means in the reduction of text dimension.
借助特征聚类进行特征抽取是信息检索领域进行文本特征降维的重要手段之一。
Margin maximization feature weighting is an effective dimension reduction technique, and it is generally based on weighting techniques and similarity measure to construct their objective functions.
间距最大化特征选择技术是一种有效的维数约减技术,一般是基于加权技术和相似性度量构造目标函数。
Feature selection and input dimension reduction are of Paramount im-portance to transient stability assessment based on neural networks.
输入特征选择和输入空间降维是基于神经网络暂态稳定评估的首要问题。