linear matrix inequalities的意思|示意

美 / / 英 / /

线性矩阵不等式


linear matrix inequalities的网络常见释义

以线性矩阵不等式 文中的结果以线性矩阵不等式(Linear matrix inequalities,LMIs)表示,可以利用标准的凸优化算法进行有效求解.通过一个数值例子说明本文方法的有效性.

转化为线性矩阵不等式 在定义Lyapunov函数时,引入正定对称矩阵变量P将Lyapunov不等式转化为线性矩阵不等式(Linear Matrix Inequalities,LMI)问题,并利用Matlab中LMI工具箱求解得到使观测器稳定的增益矩阵G和矩阵P。

linear matrix inequalities相关短语

1、 Parameterized linear matrix inequalities 参数化线性矩阵不等式

2、 Hammersteinsynj160 Linear matrix inequalities 线性矩阵不等式Hammersteinsynj

linear matrix inequalities相关例句

The controller to be designed is assumed to have state feedback gain variations. Design methods are presented in terms of linear matrix inequalities (LMIs).

假定所要设计的控制器存在状态反馈增益变化,设计方法是以线性矩阵不等式组的形式给出的。

Sufficient conditions for the existence of fuzzy state feedback gain and fuzzy observer gain are derived through the numerical solution of a set of coupled linear matrix inequalities(LMI).

用矩阵不等式给出了模糊反馈增益和模糊观测器增益的存在的充分条件,并将这些条件转化为线性矩阵不等式(LMI)的可解性。

A sufficient condition is obtained using finite dimension linear matrix inequalities (LMI) describing by linear (parameter-variety) control.

最后通过线性参变控制,获得了用有限维数线性矩阵不等式描述的充分条件。

This paper presents a condition in terms of linear matrix inequalities (LMIs) for the quadratic stability of discrete-time interval 2-d systems.

本文针对离散区间2 - D系统的二次稳定性问题,给出了线性矩阵不等式形式的判定条件。

Taking rectangular target-region as an example, a solution for opportunity-awaiting control is provided based on the theory of satisfactory control and linear matrix inequalities (LMI) approach.

以矩形目的域为例,按满意控制的思想,利用线性矩阵不等式(LMI)技术,给出了待机控制策略求解的方法与实例。

Under the assumption of time-delay during data transmission, we give the sufficient condition of agents achieving consensus stability using approach of linear matrix inequalities.

在假设数据传输存在时延的情况下,主要利用线性矩阵不等式的方法,给出了群体达到一致性的充分条件。