mean value theorem of integrals的意思|示意
积分的中值定理
mean value theorem of integrals的网络常见释义
积分中值定理 积分中值定理(Mean value theorem of integrals) 积分中值定理揭示了一种将积分化为函数值,而当f(x)=x^(d+1)时不再是精确等式,数值积分是计算定积分数值的方法和理论。
mean value theorem of integrals相关例句
This paper discusses the asymptotic rate of "mean value point" in second mean value theorem for integrals.
主要讨论了第二积分中值定理“中值点”的渐近性和渐近速度。
This paper is devoted to studying the asymptotic behavior of the intermediate point in the mean value theorem for first form curve integrals. A general result is obtained.
讨论了第一类曲线积分中值定理“中间点”的渐近性质,得到了更具一般性的新结果。
In this paper, second mean value theorem for integrals is studied, and some results of the inverse problem of the theorem are obtained.
给出了在各种情况下积分第二中值定理“中间点”的渐近性的几个结论,相信在积分学中有着很重要的作用。
This paper presents a generalization of mean value theorem for integrals and discusses the asymptotic properties of mean value of mean value theorem for integral.
对积分中值定理中间点的渐近性进行研究,给出了推广的积分第一中值定理的中间点的渐近性的一个公式。
This paper intends to discuss and prove the asymptotic behaviour of mean point in second mean value theorem for integrals in concessional terms.
对积分第二中值定理作了进一步的研究,得到了积分第二中值定理的逆问题及其逆问题的渐进性。